
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

8-1-2012

Post Processing of Optically Recognized Text via Second Order Post Processing of Optically Recognized Text via Second Order

Hidden Markov Model Hidden Markov Model

Srijana Poudel
University of Nevada, Las Vegas, srizzana@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Poudel, Srijana, "Post Processing of Optically Recognized Text via Second Order Hidden Markov Model"
(2012). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1694.
https://digitalscholarship.unlv.edu/thesesdissertations/1694

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1694&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1694?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1694&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

POST PROCESSING OF OPTICALLY RECOGNIZED TEXT VIA SECOND

ORDER HIDDEN MARKOV MODEL

by

Srijana Poudel

Bachelor in Computer Engineering
Institue of Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu

2007

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science

School of Computer Science
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
December 2012

www.manaraa.com

Copyright by Srijana Poudel 2012

All Rights Reserved

www.manaraa.com

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Srijana Poudel

entitled

Post Processing of Optically Recognized Text Via Second Order Hidden

Markov Model

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Kazem Taghva, Committee Chair

Ajoy K. Datta, Committee Member

Laxmi P. Gewali, Committee Member

Venkatesan Muthukumar, Graduate College Representative

Thomas Piechota, Ph. D., Interim Vice President for Research and Graduate Studies

and Dean of the Graduate College

December 2012

www.manaraa.com

ABSTRACT

by

Srijana Poudel

Dr. Kazem Taghva, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

In this thesis, we describe a postprocessing system on Optical Character Recogni-

tion(OCR) generated text. Second Order Hidden Markov Model (HMM) approach is

used to detect and correct the OCR related errors. The reason for choosing the 2nd

order HMM is to keep track of the bigrams so that the model can represent the sys-

tem more accurately. Based on experiments with training data of 159, 733 characters

and testing of 5688 characters, the model was able to correct 43.38 % of the errors

with a precision of 75.34 %. However, the precision value indicates that the model

introduced some new errors, decreasing the correction percentage to 26.4 %.

iii

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Dr. Kazem Taghva, for helping me focus

on the right problems, providing me with ideas and helpful insights, and guiding me

through this work. My sincere appreciation and gratitude goes to the members of my

thesis advisory committee, Dr. Ajoy Datta, Dr. Laxmi P Gewali and Dr. Venkatesan

Muthukumar for believing in me and accepting to be a part of my committee.

I would like to acknowledge the Department of Computer Science, for providing

me with a Graduate Assistantship for my master’s degree. I would also like to express

my appreciation to my husband, Roshan Gyawali, my family and my friends for their

encouragement and support during my preparation of this thesis.

iv

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ALGORITHMS . ix

CHAPTER 1 INTRODUCTION . 1
Motivation . 1
Previous Work . 2
Thesis Overview . 2
Thesis Structure . 3

CHAPTER 2 BACKGROUND . 4
Markov Chain . 4
Extending the Markov model to a Hidden Markov Model 6

Formal Definition and Parameters of HMM 6
Three Fundamental Problems . 8
Viterbi Algorithm . 9
Training an HMM . 11

Classification of OCR errors . 12

CHAPTER 3 DESIGN . 13
Preprocessing . 13
Trainer . 13

Model Parameters for First Order Model 14
Model Parameters for Second Order Model 16

Decoder . 17
Extended Viterbi Algorithm from Second Order HMM 18

CHAPTER 4 IMPLEMENTATION . 20
Data Collection . 20
Implementation of the Modules . 21

Preprocessing Module . 23
Training Module . 25
Decoding Module . 25

Implementation Issues . 25
Floating Point Underflow . 26
Choice of Model . 26
Lack of training Data . 27

v

www.manaraa.com

CHAPTER 5 EXPERIMENTS AND RESULTS 28
Performance Measures . 28
Results . 29

Recall and Precision . 29
Word Accuracy . 30
Error Reduction Rate . 30

Observation . 30

CHAPTER 6 CONCLUSION AND FUTURE WORK 32

APPENDIX A The Standard OCR Procedure 33

APPENDIX B List of OCR errors in training data 34

BIBLIOGRAPHY . 37

VITA . 39

vi

www.manaraa.com

LIST OF TABLES

2.1 OCR Error Example . 12

4.1 Error Classification for Testing Data . 21
4.2 Illustration of HMM output for different Model choice 27

5.1 Measures of TP, TN, FP and FN for the test datasets 29
5.2 Measure of word accuracy for the test datasets 30
5.3 Measure of error reduction rate for the test datasets 30

vii

www.manaraa.com

LIST OF FIGURES

2.1 Illustration of a Markov model with 3 states 5
2.2 Illustration of a Hidden Markov model with 3 states 7

3.1 Training Module . 14
3.2 HMM Model . 15
3.3 Decoding Module . 18

4.1 Class Diagram of the HMM application 22
4.2 Sample of a tagfile created by the preprocessing module 24

A.1 Standard OCR Procedure . 33

B.1 List of OCR errors in training data . 34

viii

www.manaraa.com

LIST OF ALGORITHMS

2.1 Viterbi Algorithm . 10

3.1 Extended Viterbi Algorithm for Second Order Model 19

ix

www.manaraa.com

CHAPTER 1

INTRODUCTION

Research in Hidden Markov Models (HMM) and its application to speech recogni-

tion, pattern recognition, string matching, and others has a long, robust history in

computer science. HMMs are stochastic models which were introduced and studied

in the late 1960s and early 1970s [1, 2, 3]. HMMs have been widely used in speech

recognition [4, 5, 6]. More recently they have also been applied to handwriting recog-

nition [7, 8]. Everything from text retrieval to speech recognition relies on efficient

and reliable text correction [9]. Different approaches have been successfully used by

many researchers in the area of correcting errors in text [9, 10]. In this thesis, we

have discussed a OCR post processing system based on HMM approach. In HMM

approach, the problem is, given the observation sequence, how to calculate the model

parameters; and then given the model parameters and observation sequence, how

to find the optimal state sequence. Many approaches have been used by researches

for correcting the various types of errors in Optical Character Recognition (OCR)

text [9, 11]. We contribute to OCR error correcting research by studying the HMM

approach. We research whether HMM approach will be able to correct these OCR

errors and if so, what types of errors.

1.1 Motivation

The trend to digitize paper based documents such as books and newspapers has

emerged in the last years. The objective is to preserve these documents and make

them fully accessible in digital form. For todays digital world knowledge contained

in paper based documents is more valuablew when it is available in digital form. The

first step towards digitizing a paper based archive is to scan the documents. The

next step is to apply an OCR process, meaning translate that the scanned image

of each document into machine processable text. Due to the print quality of the

documents and the error-prone pattern matching techniques of the OCR process,

1

www.manaraa.com

OCR errors occur. On historic documents this error rate will be even higher because

the print quality is likely to be lower. After finishing the OCR process several post-

processing steps are necessary depending on the application for correcting OCR errors

and spelling mistakes. Data which contains spelling mistakes or OCR errors is difficult

to process. There has been much effort in the field of correcting spelling mistakes and

OCR errors, some of which we is discussed in Section 1.2.

1.2 Previous Work

Studies have shown OCR errors significantly degrade the effectiveness in infor-

mation extraction. In a study conducted by Taghva, Beckley and Coombs [12], they

have concluded that steps should be taken to improve OCR texts, as OCR text can

weaken the usefulness of information extraction process. A large amount of research

have been directed to improving the OCR accuracy after the fact [9, 13, 14].

A semi-automatic OCR correction system has been proposed by Taghva and Stofsky

[9], called OCRspell. OCRspell is especially designed as a semi-automatic approach.

A learning mechanism is used based on the corrections applied by the user. By com-

paring error-prone token and the manual replacement by the user, dynamic mappings

are derived, e.g. iiiount@in→ mountain the mappings iii→ m and @→ a are de-

rived.

Hauser and Schulz have proposed an unsupervised training algorithm. This algo-

rithm uses a dictionary and the corpus itself to obtain training samples. For each

corpus word, the dictionary retrieves similar words based on the Levenshtein-Distance.

More techniques and details about correcting spelling mistakes can be found in Kukich

[15].

1.3 Thesis Overview

Thede and Harper defined [16] ,HMM is a statistical construct that can be used

to solve classification problems that have an inherent state sequence representation

. Given an OCR text to be corrected and other model parameters, the output of

2

www.manaraa.com

the system is the corrected text, i.e., sequence of most likely states. The system uses

Maximum Likelihood Estimates (MLE) to calculate the parameters of HMM. The

Viterbi Algorithm is then used to correct the given OCR text. The fundamental

problems of this system are to implement MLE for training a HMM, to implement

a second order Viterbi Algorithm to find the most likely sequence of states, and to

run our model for an OCR text to calculate the performance measures. There are

two practical issues that are associated with the implementation of HMM. We will

address those issues and solve them using numerical scaling and smoothing techniques.

We have implemented the second order HMM and carried out a comparative study

between the first order and the second order HMM .

1.4 Thesis Structure

This thesis is organized into different chapters starting from introduction in chap-

ter 1. In chapter 2, we provide a standard definition of HMM and the formulation

and algorithms used. We also discuss the classification of OCR errors and previous

attempts to correct the different types of errors existing in an OCR text. Chapter 3

presents detailed design of our HMM model and the extended viterbi algorithm for

a second order model. In chapter 4, we describe the implementation of our system.

We discuss problems encountered during the implementation and explain approaches

used to solve them. In chapter 5, we describe the outcome of experiments measuring

the effectiveness of our HMM system for various OCR documents. Chapter 6 offers

our conclusions and prospects for future experimentation.

3

www.manaraa.com

CHAPTER 2

BACKGROUND

This chapter provide a formal definition of HMM and its parameter. These defintions

are very much akin to those introduced by Rabiner and Juang [3]. We list the problems

related to an HMM and describe the algorithms and formulations used to solve each

of those problems.

2.1 Markov Chain

A Markov chain, sometimes also referred to as an observed Markov Model, can be

seen as a weighted finite-state automaton, which is defined by a set of states and a set

of transitions between the states based on the observed input. A markov model is a

stochastic process. Consider a system that has N distinct states S1, S2, S3, . . . , Sn.

The system undergoes a change of state at regularly spaced time intervals according

to a set of probabilities associated with that state. These probability distributions

govern the manner in which the system evolves over time. Such a system is referred

to as a stochastic process. To predict the probability of the next state that would be

traversed, a full description of the system would be required; that is the specification

of the current state along with all the predecessor states. This system is known as a

Markov model[17]. For a more formal description, the Markov chain is specified by,

� S = {s1, s2, . . . , sn} is a finite set set of N states

� π = {πi}, the initial state probabilities. πi is the probability that the model will

start in state i, with
N∑
i=1

πi = 1

� A = {aij},the state transition probabilities. aij is the probability that the process

will move from state i to state j in one transition, with
N∑
j=1

aij = 1, ,∀i

Figure 2.1 is a simple markov model with three states s1, s2 and s3. Probabilities

in the arcs represents the probability of going from state si to sj.

4

www.manaraa.com

S1

S2 S3

a21

a12

a31

a13

a23

a32

a22 a33

a11

Figure 2.1: Illustration of a Markov model with 3 states

The Markov Model makes the assumption that the process was produced by a

Markov source, a type of source in which symbols currently produced are dependent

only on a fixed number of symbols that have been produced preceeding the current

output. The order of the model specifies the number of preceeding outputs which

are taken into account for the next symbol to be produced. Since the complexity of

the model grows exponentially with the order and the added benefit of increasing the

order of the model decreases as the order grows higher first order or second order

Markov models are assumed to be sufficient for most of the applications. In a first

order Markov model, the probability of a state only depends on the previous state,

that is:

P (qt | qt-1, . . . q1) = P (qt | qt-1)

For a second order Markov model the probability of being in state Si at a time

t depends on the state Sj at time t − 1 and t − 2. An order m Markov model is

said to have a memory size of m. So the probability of the current state depends

on m number of previous states. The processes are also called observable Markov

5

www.manaraa.com

models since the output is the set of states at each instant of time, where each state

corresponds to an observable or physical event.

2.2 Extending the Markov model to a Hidden Markov Model

The Hidden Markov Model is a doubly stochastic variant of the Markov Model

with an underlying stochastic process that is not observable hidden but can only

be observed through another set of stochastic processes that produce the sequence

of observed symbols. In a regular Markov model the state transition probabilities

are the only parameters. In a HMM, each state has a set of observation symbols.

HMM can be used to solve classification problems that have an inherent state se-

quence representation. The model can be visualized as an interlocking set of states.

These states are connected by a set of transition probabilities, which indicates the

probability of travelling between two given states. A process begins, in some states,

then at discrete time intervals, the process ”moves” to a new state as dictated by

the transition probabilities. As the process enters each state, one of a set of output

symbols is emitted by the process. Exactly which symbol is emitted is determined

by a probablility distribution (emission probabilities) that is specific to each state.

The output of the HMM is a sequence of output symbols. In general, there are many

possible state sequences which generate an observation sequence. Hence, the state

sequence is hidden [16].

Consider a system with three states s1, s2 and s3. Let 0 and 1 be the observation

symbols at each state. The HMM model for this system is shown in Figure 2.2. Each

circle represents a state, value in the arcs represents the probability of going from

state si to sj. bij represents the emission probabilities.

2.2.1 Formal Definition and Parameters of HMM

As we discussed in earlier section, each state in the model has a number of param-

eters associated with it. In 1989 [5], Rabiner defined HMM as a 5-tuple (S, V, π, A,B)

where

� S = {s1, s2, . . . , sn} is a finite set set of N states

6

www.manaraa.com

S1

S2 S3

a21

a12

a31

a13

a23

a32

a22
a33

b30

b31

b20

b21

b10

b11

a11

Figure 2.2: Illustration of a Hidden Markov model with 3 states

� V = {v1, v2, . . . , vm} is a set of M possible symbols in a vocabulary. The M

observation/emission symbols correspond to the output of the system being

modeled.

� π = {πi}, the initial state probabilities. πi is the probability that the model will

start in state i.

� A = {aij},the state transition probabilities. aij is the probability that the process

will move from state i to state j in one transition.

� B = {bi(vk)}, the output or emission probabilities. bi(vk) is the probability of

generating symbol vk at state i.

Usually compact notation λ = {A,B, π} to denote the complete parameter set of the

HMM. The constraints on the HMM are
N∑
i=1

πi = 1 for 1 ≤ i ≤ N

N∑
j=1

aij = 1 for i = 1, 2, . . . , N

7

www.manaraa.com

M∑
k=1

bi(vk) = 1 for i = 1, 2, . . . , N

2.2.2 Three Fundamental Problems

Rabiner [3] states in his paper that HMM should be characterized by three fun-

damental problems.

� Evaluation: Given an observation sequenceO(O = o1, o2, . . . , oT) and a model λ,

how do we compute the probability that the observation sequence was produced

by the model. The problem of evaluation is solved using the Forward and

Backward iterative algorithms [5].

� Decoding:.Given a model and a sequence of observations, the problem is the

selection of an optimal sequence of states traversed to create this observation.

Many possible state sequence could produce a given observation sequence. For

each observation of a sequence, we have to choose those states that have the

highest individual probability of producing that observation in order to find

the optimal state sequence. A well known efficient method is a dynamic pro-

gramming algorithm known as the Viterbi Algorithm. The algorithm obtains a

solution recursively which is illustrated in Section 2.2.3.

� Training: The problem is to adjust all the parameters of the model, i.e, λ to

maximize the probability of generating an observed sequence. We need to define

the characteristics of our model based on previous observation sequences or

training examples. The most common method of estimating a model parameters

is the Maximum Likelihood Estimation (MLE) which is explained in Section

2.2.4.1. Baum Welch algorithm is also a common iterative restimation method

for training a model [18].

For our thesis, we are only concerned with the decoding and training problem. We

have used the MLE for solving the training problem and the Viterbi Algorithm for

decoding purposes. We now proceed with the formulation for each of these methods

8

www.manaraa.com

in the following section.

2.2.3 Viterbi Algorithm

The most common solution to the decoding problem is the Viterbi Algorithm (VA).

The Viterbi algorithm is used closely with Hidden Markov Models (HMMs). It is a

dynamic programming algorithm that computes the most likely state transition path

given an observed sequence of symbols. The idea of the VA is to find the most probable

path for each intermediate state and finally for the terminating state. At each time

only the most likely path leading to each state survives. To find the best state

sequence Q = {q1, q2, . . . , qT} for a given observation sequence O = {o1, o2, . . . , oT},

one need to define the quantity

δt(i) = maxq1,q2,...,qt-1 P [q1, q2, . . . , qt = si, o1, o2, . . . , ot | λ]

which means the highest probability along a single path, at time t, which accounts

for the first t observations and ends in state si. By induction one have:

δt+1(j) = [maxi δt(i)aij]bj(ot+1) To be able to retrieve the state sequence,

one need to keep track of the argument which maximized the above equation for each

t and j. This is done via the variable ψt(j) [5]. Assuming the observation sequence

is T unit length as o1, o2, . . . ,T and an HMM with N states, the complete procedure

for finding the best state sequence can be stated as follows.

9

www.manaraa.com

Algorithm 2.1 Viterbi Algorithm

INPUT: HMM Model File , Observation file
OUTPUT: Most likely sequence of states for the test file
Step 1: Initialization

Define
δ1(i) = πibi(O1) ; 1 ≤ i ≤ N
ψ(i) = 0 ; 1 ≤ i ≤ N

Here δ1(i) is the probability that symbol O1 occurs at time n = 1 and at state i.
ψ(i) stores the optimal states.

Step 2: Recursive Computation

For 2 ≤ n ≤ T and 1 ≤ j ≤ N
δn(j) = max1≤i≤N(δn-1(i)aij)bj(On)

The right hand side of the above equation is the maximum value for the probability
that the partial sequence O1, O2, . . . , On occurs at state j at time n where n ≤ T ;
and j could be any state.

ψn(j) = argmax1≤i≤N(δn-1(i)aij)
ψn(j) stores the value of state i at n − 1 that makes the probability δn(j) the
highest,i.e. the most probable state is i. For example,at n = 2 and j = 1, if
δ1(3)a31 is the highest, then ψ2(1) = 3

Step 3: Terminal States

p* = max1≤i≤N [δT(i)]
q*T = argmax1≤i≤N [δT(i)]

At the final time unit n = T , there are N probabilities δT(i) ; i = 1, . . . , N . The
highest probabilities among these probabilities is the candidate for the optimal
state sequence. ψT stores the corresponding terminal state. The final task, now, is
to backtrack to the initial state following the value of ψn.

Step 4: BackTracking

For n = T − 1, T − 2, . . . , 1 compute
q*n = ψn+1(q

*
n+1)

Set of {q*1, q*2, . . . , q*T} is the optimal state sequence.

10

www.manaraa.com

2.2.4 Training an HMM

Training or learning is the process to compute the parameters that best models a

system, given a set of sequences that originated from this system. During the training

process of an HMM, we compute the statistical parameters λ = (A,B, π) of the HMM.

The input to a training algorithm is a database of sample HMM behaviour, and the

output is the transition, emission, and initial probability distribution of HMM. There

are two standard approaches to the learning task namely supervised and unsuper-

vised training. The choice is based on the data available for training process.If the

training examples contain both the inputs and outputs of a process, we can perform

supervised training. But if only the inputs are provided in the training data, we must

use unsupervised training. Unsupervised training guesses a model that may have

produced those observations. Maximum Likelihood Estimation (MLE) comes under

supervised training, and Baum-Welch Algorithm comes under unsupervised training.

For training our HMM, we have used the MLE approach.

2.2.4.1 Maximum Likelihood Estimation

Maximum-likelihood estimation is a method of estimating the parameters of a

statistical model. When applied to a data set and given a statistical model, maximum-

likelihood estimation provides estimates for the model’s parameters. MLE methods

are considered to be robust and versatile and so they are used for most models and

for different types of data. The process of computing the statistical parameters of an

HMM involves the calculation of emission probabilities and the transition probabilities

that are associated with states. HMM parameters are estimated by MLE as follows:

Transition Probabilities, aij =
Number of transitions from state si to sj

Total number of transitions out of state si

Emission Probabilities, bi(vk) =
Number of symbol vk is emitted from state i

Total number of symbols emitted out of state i

Maximum Likelihood estimation assigns a zero probability to state transitions and

state-emission combinations that are unseen in the training data. This problem if left

11

www.manaraa.com

unchecked can cause erroneous results. It is most often handled with the use of some

type of Smoothing technique.

2.3 Classification of OCR errors

Before errors can be corrected they have to be identified and classified. A proper

classification is important in order to know which kind of errors occur. In related

work [9], the classification is based on each steps of the OCR procedure. A brief

explanation of the standard OCR procedure is described by Taghva [9] is explained

in Appendix A. For our study, we use the categorization introduced by Esakov,

Lopresti and Sandberg [19]. Our system doesn’t work with insertion and deletion

errors that results to division and concatenation of words. Some typical example for

each type of the errors is shown in Table 2.1.

1. Deletion of a character

2. Insertion of a character

3. Substitution of one character for another (1:1 Substitution)

4. Substitution of two characters for one (1:2 Substitution)

5. Substitution of one character for two (2:1 Substitution)

6. Substitution of two character for two others (2:2 Substitution)

Type Error Type Example

1 Deletion of a character deer → dee
2 Insertion of a character cat → c at
3 1:1 Substitution r → t; e → c; a → n
4 1:2 Substitution n → ii; u → ii; m → ni
5 2:1 Substitution ni → m; ii → u; tl → k
6 2:2 Substitution rm → nn; rw → nr

Table 2.1: OCR Error Example

12

www.manaraa.com

CHAPTER 3

HIDDEN MARKOV MODEL DESIGN: FIRST AND SECOND ORDER

In this chapter we describe the detail design of our HMM model. We have designed

an ergodic model, in which all states can be reached from any state. The design

consists of three major modules: the preprocessing, the trainer, and the decoder. In

the following section, we will discuss the functionality of the three modules.

3.1 Preprocessing

The preprocessing step consists to two steps, filtering and creating a tagfile. All

the characters are converted to lower cases. Then the file is parsed to converts all

characters other than those having ASCII values from 97 to 122,i.e., from a to z to

whitespaces. The next step is to create a tagfile, which is fed to the training function.

Preprocessed OCR and non-OCR version of training data set is used to create a

tagfile. Each of preprocessed files are read simultaneously, and each character of the

files are written in a new file to make the tagfile. Given this tagfile, our HMM uses

MLE to calculate emission and transition probabilities. HMM uses this tagfile to

calculate emission and transition probabilities. The observation file which is given as

input to the decoding module should also be filtered.

3.2 Trainer

The tagfile created by the preprocessing module is fed as input to this trainer

module. The output of this module is the modelfile that includes all the model

parameters for the designed model. For our system, we have used the Maximum

Likelihood Estimation method for calculating the model parameters. Figure 3.1 shows

an overview of this phase.

13

www.manaraa.com

Maximum Likelihood

Estimation
tagfile modelfile

Figure 3.1: Training Module

3.2.1 Model Parameters for First Order Model

A first-order HMM makes two assumptions; first, the probability of a state is only

dependent on the previous state:

P (st | st-1, . . . , s1) = P (st | st-1)

Second, the probability of an output observation vt is only dependent on the state

that produced the observation, st and not on any other observations or states:

P (vt | st, st-1, . . . , s1, vt-1, . . . , v1) = P (vt | st)

3.2.1.1 States and Symbols

For English language, there are 26 letters in the alphabet. These 26 letters cor-

responds to 26 states of our first order HMM, i.e, N = 26. The next step is the

identification of M optimal symbols {v1, . . . , vM}. The model states and observation

symbols for the first order design are identified as follows.

States in the Hidden Markov Model: S = {a, b, c, . . . , z}

Distinct symbols observed in each state: V = {a, b, c, . . . , z}

Parameters λ = {A,B, π} are computed using MLE.

Consider a model with States, S = {a, b, c, d, e} and V = {a, b, c, d, e}.

Pictorially, the HMM can be modeled as in figure 3.2. Each circle in the figure

represents a state. The connectors between two states are the transition probabilities.

In each state, the symbol that can be observed are a, b, c, d, and e . Probabilities of

observing each symbol in states is given by emission probabilities.

14

www.manaraa.com

c

d

b
e

 a

Symbols

a,b,c,d,e

Symbols

a,b,c,d,e

Symbols

a,b,c,d,e

Symbols

a,b,c,d,e

Symbols

a,b,c,d,e

Figure 3.2: HMM Model

3.2.1.2 State Transition Probability:

For a first order model, the probability of being in state Si at a time t depends

on the state Sj at time t − 1. For a model with 26 states, there are 26 × 26 number

of first order transition probabilities. Transition matrix A = aij, the probability of

transition from state si to state sj,for a first order model is calculated using MLE as:

Transition Probabilities, aij =
Number of transitions from state si to sj

Total number of transitions out of state si

3.2.1.3 State Emission Probability:

For our proposed model with 26 states and 26 symbols, there are 26 × 26 num-

ber of first order emission probabilities. Emission matrix B = bi(vk), the probability

that symbol vk is emitted at state si, for a first order model is calculated using MLE as:

15

www.manaraa.com

Emission Probabilities, bi(vk) =
Number of symbol vk is emitted from state i

Total number of symbols emitted out of state i

3.2.1.4 Initial State Probability:

Initial state probability πi is the probability that the model will start in state i.

It is the probability of state Si being the start state in an observation sequence. For

our model with 26 states, there are 26 number of initial state probabilities.

3.2.2 Model Parameters for Second Order Model

A second-order HMM makes two assumptions; first, the probability of a state is

only dependent on the two previous state:

P (st | st-1, . . . , s1) = P (st | st-1, st-2)

Second, the probability of an output observation vt is only dependent on the state

that produced the observation and its previous state

P (vt | st, st-1, . . . , s1, vt-1, . . . , v1) = P (vt | st, st-1)

3.2.2.1 States and Symbol

The second order HMM is modelled with 27 states. In each states, 27 symbols can

be observed. The model states and observations symbols for the second order design

are identified as follows.

States in the Hidden Markov Model: S = {a, b, c, . . . , z,whitespace}

Distinct symbols observed in each state: V = {a, b, c, . . . , z,whitespace}

Parameters λ = {A,B, π} are computed using MLE.

The reason for adding whitespace as a state and symbol is explained in Section 4.3.2.

3.2.2.2 State Transition Probability:

For a second order HMM, probability of transitioning to a new state depends

not only on the current state, but also on the previous state. The transition matrix

A = {aijk}, the probability of transition from state sj to state sk given the state before

sj is state si, is defined as follows.

16

www.manaraa.com

aijk = P (st = sk | st-1 = sj, st-2 = si)

aijk =
Number of transitions from sj | t− 1 and si | t− 2 to state sk | t

Total number of transitions from sj | t− 1 and si | t− 2

with the constraint
N∑
k=1

aijk = 1 ; 1 ≤ i ≤ N , 1 ≤ j ≤ N

where N is the number of states in the model, and st is the actual state at time t.

For a model with N states, there are N × (N ×N) transition probabilities.

3.2.2.3 State Emission Probability:

Similar to the extension of the transition probabilities, the approximation for the

emission probabilities can also be modified to include the second order information.

The emission matrix B = bij(vk), probability that symbol vk is emitted at state sj

given the state before sj is state si, is defined as follows.

bij(vk) = P (vt = vk | st = sj, st-1 = si)

bij(vk) =
Number of times symbol vk is emitted at state sj at t when st-1 = si

Total number of symbols emitted by state sj when st-1=si

with the constraint
N∑
k=1

bij(vk) = 1 ; 1 ≤ i ≤ N , 1 ≤ j ≤ N

where N is the number of states in the model. For a model with N states and M

symbols, there are N × (N ×M) emission probabilities.

The extended viterbi algorithm for the second order model that we have used for

our HMM design uses only the first order emission probabilities. Therefore, for our de-

sign the second order emission probabilities are same as those of the first order model.

3.2.2.4 Initial State Proabilities:

The initial probabilities of the second order model are same as those of the first

order model.

3.3 Decoder

The most common solution to the decoding problem of an HMM is the Viterbi

Algorithm. We have also used the same for our decoder module. The input to this

17

www.manaraa.com

module is the modelfile created by the trainer module and the observation file. The

output of this module is the corrected file. Figure 3.3 shows an overview of this phase.

The Viterbi algorithm for a first order model is described in Section 2.2.3. In this

Viterbi Algorithm
outputfile modelfile

Preprocessed testfile

Figure 3.3: Decoding Module

following section we describe the extended viterbi algorithm for a second order HMM.

3.3.1 Extended Viterbi Algorithm from Second Order HMM

In this section, we present the viterbi algorithm for second order HMM. This al-

gorithm was proposed by Yang, Ke [20]. In 1988, Kundu and Bahl have used this

algorithm for handwritten word recognition and have shown the advantage of second

order model over the first order one [7].

18

www.manaraa.com

Algorithm 3.1 Extended Viterbi Algorithm for Second Order Model

INPUT: HMM Model File , Testfile
OUTPUT: Most likely sequence of states for the test file
Step 1: Initialization

For 1 ≤ l ≤ N ,
δ1(l) = πlb(o1 | l)

For 1 ≤ l ≤ N ,
For 1 ≤ m ≤ N
δ2(l,m) = δ1almb(o2 | m)

Step 2: Recursive Computation

For 3 ≤ i ≤ T ,
For1 ≤ m ≤ N ,
For1 ≤ n ≤ N ,
δi(m,n) = max1≤l≤N [δi-1(l,m)almn]b(oi | n)
ci(m,n) = argl max1≤l≤N [δi-1almn]

Step 3: Determination of the last two states

sT = argn max1≤m≤N,1≤n≤N [δT(m,n)]
sT-1 = argm max1≤m≤N,1≤n≤N [δT(m,n)]

Here, the expression argm max1≤m≤N [expression] denotes a function whose value
is the value of m that maximizes the value of the expression.

Step 4: Backtracking to the first state

For T − 2 ≥ i ≥ 1,
si = ci+2(si+1, si+2)

Now the optimal sequence is in si.

19

www.manaraa.com

CHAPTER 4

IMPLEMENTATION AND IMPLEMENTATION ISSUES

This chapter describes implementation of the HMM model described in Chapter 3.

We have used java programming language for implementing the algorithms. The

first step in implementing our model is the training of our HMM. Training of an

HMM requires data. In this chapter, we describe data collection methods and detail

implementation of the training and decoding phases. We also describe the issues

related with implementing our system and approaches used to overcome those issues.

4.1 Data Collection

We need a set of data for training and testing purposes. Since we are testing our

HMM with the OCR text, the first step was to find an OCR book, manually correct

it, and preprocess it to fit with our system. We selected a book with 60 pages, which

was manually corrected with reference to a non-OCR version image of the book. Two

text files, the OCR and the correct version of the book, were created which is fed to

the HMM for training purpose. The files were further divided into training sets and

testing sets. The first 55 pages of the book were used for training. Remaining pages

were used for testing. The list of OCR errors present in the training data in shown

in Appendix B.

The dataset chosen for testing was further divided in 5 files. The count of the

OCR errors present in the testing files are tabulated in Table 4.1.

20

www.manaraa.com

Test File Error Type Count

File1 1:1 Substitution 8
(1164 characters) 1:2 Substitution 1
File2 1:1 Substitution 6
(1052 characters) 1:2 Substitution 1
File3 1:1 Substitution 7
(1002 characters) 1:2 Substitution 1

2:1 Substitution 1
File4 1:1 Substitution 3
(1225 characters) 2:1 Substitution 2
File5 1:1 Substitution 2
(1245 characters) 2:2 Substitution 2∑

34

Table 4.1: Error Classification for Testing Data

4.2 Implementation of the Modules

In this section we descibe the implementation details of the preprocessing, train-

ing and decoding modules. Implementation involves defining number of classes that

are necessary for each of these modules. We have to consider the data structures

necessary for defining the parameters of each modules. We have used class diagram

of UML [1], which is shown in Figure 4.1, to represent the major classes of our appli-

cation

21

www.manaraa.com

MLE_FirstOrder

+ occurance : Hashtable<String, Integer>

+ states: Vector<String>

+ alphabet : String[]

+ initial_probability:

Hashtable<String, Double>

+ transition_probability :

Hashtable<String,Hashtable<String, Double>>

+ emission_probability :

Hashtable<String,Hashtable<String, Double>>

+ initVariables(File) : void

+ createModelFile (File) : void

MLE_SecondOrderWithoutSpace

+ occurance : Hashtable<String, Integer>

+ states: Vector<String>

+ alphabet : String[]

+ initial_probability:

Hashtable<String, Double>

+ transition_probability :
Hashtable<String,Hashtable<String, Double>>
+ emission_probability :
Hashtable<String,Hashtable<String, Double>>

+ initVariables(File) : void

+ createModelFile (File) : void

ViterbiApplication

+ occurance : Hashtable<String, Integer>

+ states: Vector<String>

+ alphabet : String[]

+ initial_probability:

 Hashtable<String, Double>

+ transition_probability :
Hashtable<String,Hashtable<String, Double>>
+ emission_probability :
Hashtable<String,Hashtable<String, Double>>

+ readModelFile_FirstOrder()

+ readModelFile_SecondOrderWithoutState()

+ readModelFile_SecondOrderWithState()

+ viterbi_FirstOrder(File,File)

+viterbi_SecondOrder(File,File)

PreprocessInput

+ numtoWhitespaces (File,File): void

+ make_tag(File, File, File) : void

MLE_SecondOrderWithSpace

+ occurance : Hashtable<String, Integer>

+ states: Vector<String>

+ alphabet : String[]

+ initial_probability:

Hashtable<String, Double>

+ transition_probability :
Hashtable<String,Hashtable<String, Double>>
+ emission_probability :
Hashtable<String,Hashtable<String, Double>>

+ initVariables(File) : void

+ createModelFile (File) : void

Caller

+ main(String[]) : void

Figure 4.1: Class Diagram of the HMM application

22

www.manaraa.com

4.2.1 Preprocessing Module

This module consists to two functions, numpunctuationstowhitespace and make-

tag. The parameter to the first function is the file that needs to be filtered. This

function reads each character of the file, and converts all the characters to lowercase.

It filters all characters other than those having ASCII value between from 97 to 122,

i.e., from a to z . The training sample files are fed as input to the maketag function.

Both the files are first filterd to remove all the unwanted characters. A new text file

called tagfile.txt is created. Then each character of the file is read one at a time and

written in the tagfile ensuring that the topology of transitions and emission is not

violated. A sample tagfile created by this module is shown in Figure 4.2.

23

www.manaraa.com

n n

o o

t t

e e

s s

o o

n n

w w

i i

t l

c c

h h

c c

r r

a a

f f

t t

b b

y y

g g

e b

o o

r r

g g

e e

l l

y y

m m

a a

n n

k k

i i

t t

t t

r r

e e

d d

g g

e e

w w

e e

a a

r r

e e

Figure 4.2: Sample of a tagfile created by the preprocessing module

24

www.manaraa.com

4.2.2 Training Module

The input to the training module is the tagfile prepared by the preprocessing mod-

ule. This module consists of two functions, initVariables and createModelfile. We have

used the Hashtable data structure to store the occurance and the emission, transition

and initial probabilities. The states are defined as string Vector. All the symbols

that can be emitted at each state are stored in a string array. initVariables function

maintains a count of the transitions that are seen between states for all the possible

combinations of states and also maintain counts for the number of times symbols are

generated from each states. This count is used to estimate emission and transition

probabilities as described in Chapter 3. The createModelfile function creates a new

text file hmmmodel.txt in which it writes the model probabilities calculated in earlier

function. This module created a model file of size 19, 224 bytes for the first order

model and 282, 366 bytes for the second order module.

4.2.3 Decoding Module

The decoding module is the implementation of the viterbi algorithm explained

in Chapter 3. The input to the decoding module is the modelfile prepared by the

training module and the test(observation)file. The output of this module is the hmm-

correctedfile, which contains the most likely sequence of states. The output file is

then analyzed to determine how well the HMM model performed. The evaluation

measures and findings of our experiment are explained in next chapter.

4.3 Implementation Issues

Although the theory of HMM is well established, the implementation involves a

large number of assumptions and restrictive conditions. Therefore, the results are

very much dependent on implementation issues. In this section, we deal with issues

related to implementing an HMM and our approach for solving them.

25

www.manaraa.com

4.3.1 Floating Point Underflow

When implementing a HMM, long observation sequences often result in the com-

putation of extremely small probabilities. These values are usually smaller in mag-

nitude than the smallest value of a floating point number in a system. This results

in a significant problem called floating point underflow. When Viterbi algorithms

are applied to long sequences, it results in extremely small probability values that

could underflow on most machines. We solve this problem by using scaling. A sim-

ple solution is to log all the probability values and then add those values instead

of multiplying them. One approach would be to store the logarithmic values of the

probabilities in the model file. In our implementation, the model file do not have the

logarithmic values. We have used scaling during the viterbi implementation.

4.3.2 Choice of Model

There is no theoretically correct way of making choice of the type of model, model

states and observation symbols. These are made based on trial and error depending

on the process being modeled. In our second-order model, we initially designed the

HMM with 26 states. When running the model with test files, we observed that more

errors were introduced in stop words and the first character of a word. All the state

transitions for stop words and first character of a word is ignored if whitespace is not

considered as a state. This resulted in wrong modeling of the model parameters and

thus more errors were introduced. To minimize such errors, the model was redesigned

with whitespace added as a state. The results of an HMM model is hugely dependent

on proper choice of model. Table 4.2 illustrates the results of the test files for the two

different models. The word accuracy is calculated as described in Section 5.1.

26

www.manaraa.com

File Original Word HMM Model New Word
Accuracy Accuracy

File1 95.5 26 states 89.04
27 states 96.5

File2 95.9 26 states 92.5
27 states 98.8

File3 94.15 26 states 85.06
27 states 94.8

File4 97.5 26 states 91.2
27 states 98.4

File5 97.4 26 states 91.4
27 states 97.4

Table 4.2: Illustration of HMM output for different Model choice

Table 4.2 shows that the word accuracy of the datasets decreased when the HMM

was modeled with 26 states.

4.3.3 Lack of training Data

Lack of training data results in parameters receiving poor values and certain char-

acteristics of the source being modeled incorrectly. Some case of emission and tran-

sitions may not occur in the training data. The model will never recognize such

outcomes and will state those as impossible observations by assigning zero probabili-

ties values. One appraoch to solve this problem is the smoothing technique. Another

remedy is to reduce the size of the model, thus reducing the number of parameters

that need to be estimated. However, such change is undesirable when the model is

chosen to accomodate some inherent characteristics of a source. In our experiments,

a minimum value for all probability values was enforced.

27

www.manaraa.com

CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter we provide the definition of the performance measures for the system

and the values obtained. These values give insights about the performance of the

post-processing system. The system is tested for the dataset described in Section 4.1.

The value of the performance measures for the test dataset are shown in Section 5.2.

5.1 Performance Measures

To evaluate the performance of our HMM, we need to determine the evaluation

measures. There are four possible outcomes that can occur when applying an HMM

to an incorrect text.

1. correct → correct: A correct character is still correct at HMM output. This is

a true negative (TN).

2. correct→ wrong: A correct character is corrected to a wrong character at HMM

output. This is a false positive (FP).

3. wrong → correct: A character is corrected by the HMM. This is a true positive

(TP).

4. wrong → wrong: A wrong character is still wrong at HMM output. This is a

false negative (FN).

Recall and Precision values are calculated using TP, FP and FN as follows:

Recall =
TP

TP+FN

Precision =
TP

TP+FP

The definition of these measures has been proposed and discussed by Reynaert [21].

Recall values show the ability of the system to correct errors and the precision value

28

www.manaraa.com

indicates the accuracy of the system. Other performance measure are word accuracy

and error reduction rate. Word accuracy is determined as defined by Taghva in his

study OCRSpell [9].

Word Accuracy =
number of words recognized correctly

total number of words

The error reduction rate is calculated as follows:

Error Reduction Rate =
Corrected errors - Introduced errors

Total errors

5.2 Results

In this section, the statistics of the performance measures for the test datasets are

tabulated.

5.2.1 Recall and Precision

Table 5.1 shows that values of TP, TN, FP and FN for the test datasets. We

observe that the HMM was able to make some corrections (TP values), but it also

introduced some errors (FP values). The observation on introduced errors are ex-

plained in Section 5.3. In an average, recall of 43.38% and precision of 75.34% were

obtained.

Test File TP TN FP FN Recall Precision
File1 2 1109 0 7 22.2 100
File2 5 1002 0 2 71.4 100
File3 3 901 2 6 33.3 60.0
File4 2 1172 1 3 40.0 66.7
File5 2 1192 2 2 50.0 50.0∑

14 5376 5 20

Table 5.1: Measures of TP, TN, FP and FN for the test datasets

29

www.manaraa.com

5.2.2 Word Accuracy

Table 5.2 shows that the HMM was able to improve the word accuracy of the test

files. In an average, the word accuracy of the test file increased from 96.3% to 97.3%.

Test File Initial No. of No. of Words New
Word Accuracy Words Recognized Correctly Word Accuracy

File1 95.5 201 194 97.4
File2 95.9 174 172 98.8
File3 94.15 154 146 94.8
File4 97.5 206 202 98.4
File5 97.4 198 194 97.4

Table 5.2: Measure of word accuracy for the test datasets

5.2.3 Error Reduction Rate

The error reduction rate determines how many errors were reduced by the system.

The number of corrected errors is equal to the TP values and the number of introduced

Test File Error Count Corrected Introduced
Errors Errors

File1 9 2 0
File2 7 5 0
File3 9 3 2
File4 5 2 1
File5 4 2 2∑

34 14 5

Table 5.3: Measure of error reduction rate for the test datasets

errors is equal to the FP values. The error reduction rate obtained is 26.14%.

5.3 Observation

In the result section we found that some new errors were introduced by the HMM

(FN values). This section explains the occurence of those new errors. Second order

viterbi algorithm uses the transition and emission probabilities to find the optimal

sequence. Since training data determines the value of these probabilities, we have to

go through the training data to find the possible reason for the introduced error. We

30

www.manaraa.com

observed that just judgment → just hudgment. In the training file, we found that

the count of transition (t whitespace j), the transition of whitespace to j given the

earlier state is t, is 9 whereas the count of transition (t whitespace h), the transition

of whitespace to h given the earlier state is t, is 109. Therefore, transition probability

at whitespace h is higher than at whitespace j. For the error, quantity → huantith we found

count of transition (ity) is 76 whereas the count of transition (ith) is 188. For the error,

salem → salea we found count of transition (lem) is 42 whereas the count of transition

(lea) is 56. We observed that higher the number of occurence of a transition, higher

is the likelihood for the transition to be in the optimal state sequence. Therefore, the

output of HMM is dependent on transitions in the training file.

31

www.manaraa.com

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we presented a post processing system based on second order HMM.

The motivation of this study was to propose a system for correcting the errors in OCR

generated text. For this purpose, we designed a HMM model, implemented the MLE

and Viterbi Algorithm in Java. The proposed system achieved an error reduction rate

of 26.4 % on the test data. In an average, recall of 43.38% and precision of 75.34%

were obtained.

A study based on first order HMM for correcting OCR errors achieved recall of

11.76% and precision of 100%. The high recall value indicates that the second order

model corrected more error compared to the first order model. Of the three different

types of OCR errors that we have classified, the system was able to correct most of

the 1:1 errors.

Adding more states and observation symbols to the HMM and design of advanced

preprocessing module to detect the OCR errors can potentially improve the perfor-

mance of the system. Further studies on improvement of the system output are the

prospect as future work.

32

www.manaraa.com

APPENDIX A

The Standard OCR Procedure

Figure A.1 shows the typical OCR process. The procedure involves four standard

Scanning Zoning Segmentation Classification

HARDWARE OCR Device

Figure A.1: Standard OCR Procedure

steps.

1. scanning the paper documents to procedure an electronic image

2. zoning which automatically orders the various regions of the text in the docu-

ments

3. the segmenation process breaks the various zones into their respective compo-

nents (zones are decomposed into words and words are decomposed into char-

acters)

4. the characters are classified into their respective ASCII characters

33

www.manaraa.com

APPENDIX B

List of OCR errors in training data

Error Occurrence

g -> s 1

v -> y 1

s -> a 2

r ->x 3

f -> l 1

u->i 1

m -> n 1

r -> d 1

s -> e 1

a -> o 3

l -> n 1

u -> v 1

v -> u 1

e -> o 1

f -> i 1

u -> m 1

h -> i 1

il -> u 1

hi -> tu 1

rn -> m 2

ii -> ni 1

ii -> ri 1

on->cm 1

ek->dc 1

sc -> ao 1

um -> im 1

si -> no 1

iu -> ur 1

re -> fc 1

el -> ri 1

im - > un 1

Figure B.1: List of OCR errors in training data

34

www.manaraa.com

Error Occurrence

v -> y 1

in ->m 1

l -> j 2

e -> t 2

f ->i 5

a-> o 10

l-> i 8

n -> m 3

e -> u 1

l -> i 1

m -> x 1

y -> jr 1

u -> y 1

g -> s 1

e -> r 1

t -> i 2

y -> s 1

si -> m 1

a -> f 1

r -> i 1

nr -> m 1

s -> i 1

c -> o 2

l -> i 2

o -> c 1

in -> m 1

m -> n 2

x -> i 3

v -> u 2

j -> i 1

e -> o 1

f -> i 1

in -> m 2

im -> un 1

ir -> n 1

i -> l 1

a -> c 1

a ->e 1

c -> o 1

n -> ii 3

ii -> n 2

35

www.manaraa.com

Error Occurrence

b -> e 1

r->s 2

h->ii 1

m->ni 5

al->ri 1

um->im 2

rm->nn 4

g->s 3

el->d 2

is->d 2

ll->u 2

ri->ii 3

r->ir 2

y->rs 1

s->nd 1

f->t 4

a->u 3

ci->d 2

rn->m 2

l->f 2

t->l 1

r->x 5

z->s 2

a->z 4

in->m 2

c->e 7

r->l 3

f->t 2

f->l 1

iu ->ur 1

h -> b 2

g ->c 3

rc ->n 1

y -> j 1

a -> u 2

v -> r 1

r -> e 2

e-> r 2

el -> ri 1

x -> z 2

36

www.manaraa.com

BIBLIOGRAPHY

[1] L.E. Baum and T. Petrie, “Statistical inference for probabilistic functions of
finite state Markov Chains,” The Annals of Mathematical Statistics, vol. 37,
pp. 1554–1563, 1966.

[2] L.E. Baum , “An inequality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes,” Inequalities, vol. 3,
pp. 1–8, 1970.

[3] L.R Rabiner and B.H Juang, “An Introduction to Hidden Markov Model,” ASSP,
vol. 3, no. 1, pp. 4–16, 1986.

[4] S.E. Levinson, L.R. Rabiner and M.M. Sondhi , “An Introduction to the appli-
cation of the theory of probabilistic functions of Markov process to Automatic
Speech Recognition,” Bell System Technical Journal, vol. 62, no. 4, pp. 1035–
1074, 1983.

[5] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,
1989.

[6] F. J. L. R. Bahl and R. L. Mercer, “A Maximum Likelihood Approach to Continu-
ous Speech Recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-
5, pp. 179–190, 1983.

[7] A. Kundu, Y. He, and P. Bahl, “Recognition of handwritten word: First and sec-
ond order hidden markov model based approach,” Pattern Recognition, vol. 22,
no. 3, pp. 283 – 297, 1989.

[8] S. R. Veltman and R. Prasad, “Hidden markov models applied to on-line hand-
written isolated character recognition,” IEEE Transactions on Image Processing,
vol. 3, no. 3, pp. 314–318, 1994.

[9] K. Taghva and E. Stofsky, “OCRSpell: an interactive spelling correction system
for OCR errors in text,” IJDAR, vol. 3, no. 3, pp. 125–137, 2001.

[10] J. F. Mari, J. P. Haton, and A. Kriouile, “Automatic Word Recognition Based
on Second-Order Hidden Markov Models,” IEEE Transactions on Speech and
Audio Processing, vol. 5, no. 1, pp. 22–25, 1997.

[11] K. Taghva, J. Borsack, B. Bullard, and A. Condit, “Post-Editing Through Ap-
proximation and Global Correction,” IJPRAI, vol. 9, no. 6, pp. 911–923, 1995.

[12] K. Taghva, R. Beckley, and J. Coombs, “The Effects of OCR Error on the Ex-
traction of Private Information,” in Document Analysis Systems VII, vol. 3872,
pp. 348–357, 2006.

37

www.manaraa.com

[13] Kazem Taghva, Allen Condit, Julie Borsack, John Kilburg, Changshi Wu, and
Jeff Gilbreth, “The MANICURE Document Processing System,” tech. rep., In-
formation Science Research Institute, University of Nevada, Las Vegas, March
1995.

[14] Kazem Taghva, Allen Condit, and Julie Borsack, “An expert system for auto-
matically correcting OCR output,” in In Proceedings of the 1994 International
Symposium on Electronic Imaging Science and Technology, pp. 270–278, 1994.

[15] K. Kukich, “Techniques for automatically correcting words in text,” ACM Com-
put. Surv., vol. 24, pp. 377–439, Dec. 1992.

[16] S. M. Thede and M. P. Harper, “A second-order Hidden Markov Model for
part-of-speech tagging,” in Proceedings of the 37th Annual Meeting of the ACL,
pp. 175–182, 1999.

[17] L. Vyas, “Finding Acronyms and their definitions using HMM,” Master’s thesis,
May 2011.

[18] C. Zhai, “A Brief Note on the Hidden Markov Models(HMMs),” March 2003.

[19] J. Esakov, D. P. Lopresti, and J. S. Sandberg, “Classification and distribution
of optical character recognition errors,” in Proceedings of the IS&T/SPIE Inter-
national Symposium on Electronic Imaging, (San Jose, CA), February 1994.

[20] Y. H. Y. He, “Extended Viterbi algorithm for second order Hidden Markov
process,” 1988 Proceedings 9th International Conference on Pattern Recognition,
vol. 718, no. 1, pp. 718–720, 1988.

[21] Martin Reynaert, “All, and only, the Errors: more Complete and Consistent
Spelling and OCR-Error Correction Evaluation,” in Proceedings of the Interna-
tional Conference on Language Resources and Evaluation, LREC 2008, 26 May
- 1 June 2008, Marrakech, Morocco, European Language Resources Association,
2008.

38

www.manaraa.com

VITA

Graduate College
University of Nevada, Las Vegas

Srijana Poudel

Degrees:
Bachelor of Computer Enginnering 2007
Institute of Engineering, Pulchowk Campus, Tribhuvan University

Thesis Title: Post Processing of Optically Recognized Text via Second Order Hidden
Markov Model

Thesis Examination Committee:
Chairperson, Dr. Kazem Taghva, Ph.D.
Committee Member, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. Laxmi P. Gewali, Ph.D.
Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D.

39

	Post Processing of Optically Recognized Text via Second Order Hidden Markov Model
	Repository Citation

	tmp.1374277684.pdf.qr0So

